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THE SAMPLING THEOREM FOR THE IMAGE OBTAINED BY A CIRCULAR
APERTURE AND ITS APPLICATIONS TO NUMERICAL CALCULATION
OF AMPLITUDE, INTENSITY AND THEIR FOURIER TRANSFORMS
WITH ANALYTICAL EXPRESSICN OF RESPONSE FUNCTIONScl)

Hideya Gamo(z)

ABSTRACT. The sampling theorem for the amplitude
of waves by a circular aperture is derived; namely, the
complex amplitude F(p, ¢) in the image plane is expressed

as.
Flo)= 5 5 Falhus/ka)Cuslo,0) (L
FaCusfbe) == [ F sl b, Yexp(—ine) do (2
Cus(o0) =exp (n0) Ja (k) Zhns/ o' ) {(Re)o=Ra?) (3)

where o is aperture constant, p,¢ipolaf coordinates,
k = 21/X and A wavelength,lkns sth zero of the Bessel

function Jn(x). The sampling functions (Cns) satisfy

the orthogonal relation

‘21” ‘/;:"l;u?m(l‘y (v”) Cul*(ﬁ: ¢)Pdpdv=25-~551/ {ka’.]l'()'"‘)}f o (4)

and Cns is/uﬁity upon a sampling circle of radius‘kns/ka

and is zero upon the other sampling circles of the same
order (Figure 1). The sampling coefficient Fn(AnS/ka)

is obtained by the integration with angle ¢ of the complex
amplitude at a sampling circle multiplied by exp(-ing).

At each sampling circle of order zero a sampling coeffi-’
cient is obtained,and at each sampling circle of
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non-zero order fﬁo sampling coefficients Fn(AnS/ka) and

F_n(knslka) are obtained. There is an important relation ¢

between the above sampling coefficlent and the coefficient
of Fourier-Bessel expansion of the pupil function;

e o

Kus=A=Fulhus/ k@) ()" (ka]u Ga)}2 (5)
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and the pupil function f£(r, 0) is expressed as

'/f'(" 0= ?j ;,\"_,: Kus exp(ind) Js(Aus7/a) (6)

AR

The number of sampling coefficients whose sampling
circles are included within a circle of area S of the
image, namely, the number of degrees of freedom, is
estimated as m02S/A2 by considering the distribution of
zeros of J (xX) and by using known results for rectan-
gular aper%ures. )
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That the Fourier transform of intensity distribu~
tion of an image by a circular aperture o vanishes '
outside the region of a circle of radius 20 in various
degrees of coherence of illumination, is shown by con-
sidering that the intensity is described by a series

of products C__C  .s and Fourier transforms of C_ C ..
ns mt* ns mt¥*

vanish outside the circle mentioned above, as is
clarified by means of convolution integrals or analy-
tically in Appendix 2. Because of the limited spectrum
of the intensity distribution mentioned above,the sampl-
ing theorem for intensity distribution is obtained by
‘putting 2o in place of o into Equations (1) - (3). The
Fourier transform of intensity distribution is obtained
by (5) and (6) where o is replaced by 20, and the
response function may be calculated by these equations
from the intensity distribution obtained analytically
or experimentally.

These sampling theorems may be used for interpola-
tion of amplitudes and intensities. By taking the well
known Airy figure at sharp focus as an example,it is
shown that the sampling theorem for intensity will be
preferred to the sampling for amplitude because of the
higher accuracy of the former. The relation between
the circle polynomial expansion due to Zernike, Nijboer
and Hienhuis and the Fourier-Bessel expansion of the
pupil function is considered as a preliminary to numer-~
ical calculation by sampling theorems.




The response function of a pupil with small
aberrations may be expressed analytically by the
Fourier transform of analytical expression for inten-
sity distribution, and infinite response functions
obtained in this paper, namely, the method using (5)

and (6), the one using Fourier transforms of Cnscmt*

in Appendix 2, and the one treated in Appendix 3

are discussed. The first method will be most conven-
iently used and be complemented by the third method,
since the value of the response function at the origin
which cannot be obtained accurately by the first
method is easily obtained by the third method.

1. INTRODUCTION

Most of the optical images we treat are two-dimensional; the great
majority of them can be obtained by a circular aperture. Among the two-
dimensional theorems, there are those which are treated by Blanc-Lapieree,
Gabor, Toraldo di Francia, Fellgetl and Linfoor [2]. fhey correspond to a

square aperture; the amplitude at each lattice point of the two-dimensional
>’square lattice is taken as the sampling value. It is of course possible

.to treat the images by a circular aperture with. this method. For example,
the sampling values correspohding to the square apertufe which circumscribes
the circular aperture under consideration need to be taken. It has faults,
such as the fact that the sampling values are not completely independent,

and also, when there is axial symmetry to the image, it is difficult to see
through. Hence,‘it is imperative that a sampling theorem which best fits the
circular aperture system be derived. Since sampling theorems generally have
meanings in the interpolation method, the derivatioﬁ of a sampling theorem
for an axial symmetric circular aperture can be employed 'as an interpolation.
method for calculation.of the analytical images of the Zernike, Nijboer, and
Nienhuis' [3] system with aberrations. The sampling theorem for the intensity
distribution discussed in 2.2 can be actually utilized. By constructing a
table of the standard sampling functions'.(cnS in the text), any intensity
.distribution for the given sampling value can be calculated by multiplication
and additionm.




Since the Fourier transform.of.the standard.functions can be closely
.correlated with the Fourier-—Bessel expansion, the Fou;ier transform can be
obtained by giving theAsampiing.values. By applying this method to the cal-
culation of Zernike, the response function can be obtained. It probably
can be said that this method is an;alternative‘ﬂifthe convolution integral
method by Hopkins, De [4]. 'Also, if the analytical image of the light
source can be obfainedﬂby.experiments, the response function can be derived
by determining the sampling value of the image. The sampling theorem for

intensity is, also, useful for arranging experimental data.

We will consider.the.degrees of .freedom.of .the circular aperture image. .

This problem is related to the distribution of zeros of the Bessel function.
. Although the calculation.of Bessel.functions becomes necessary at several
places, references are given for the basic equations [5]. In order to

prove that the frequency band of the .intensity distribution is restricted,
aside from.the direct observation method, the series expansion method is
given in the appendix. They were added since tﬁey cannot be found in refer-
ence books.on Bessel functions, and also it was thought that they might be
useful in the future. It is hopedjthat the physical meanings of the results

are clear without.getting involved in discussions of the equations.

2. SAMPLING THEOREMS

2.1. Sampling. Theorems of the Amplitude(3)

Letting o be the aperture constant in optics, only those Fourier com-
ponents included in a circle of radius a contribute to the image formation.
o = sin 0, where 6 is half of the angle of the light flux entering the pupil

from a pointon the object surface. The Fourier component restricted in the

(3)According to the private communication with D. Gabor, the sampling
theorem for a circular aperture was given in the Ritchie Lecture (1952)
which, however, is unpublished.
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circle of radius a is'expressed as f(r,0). r,e.gre the radius and angle,

respectively, in polar coordinates. £(r,60) is always zero for r > o and
takes values other than zero for r < a. In contrast to.the use of the double
Fourier series for deriving the sampling theorem for a square aperture, the

Fourier-Bessel expansion in the circle of a circular aperture f£(r,08) is used.

The Fourier-Bessel. function is.expressed by the following equation:
f(f. 0) ’::é :E: Kus exi’“”")]l(‘u’/“) y (l)

The expansion coefficient Khs is given by the. following orthogonal
relation.

K= Ty (l.,))’f ff(r.l!) -
xexp(—int) Ju(Ausr/a) rdrds (2)

~Ans is the.sth zero.point .in the. Béssel function 6f the first kind Jn(x).
The orthogonal relation is obtained by the Lommel integral (Appendix 1).

2l [exetita-m o1, urta)
X JuAms7/ @) rdrdd =8umdst{afa' (Res) }1/2

(3

Let us obtain the. Fourier transform of the pupil functibn.f(r,e) given by
the above Fourier-Bessel expansion. Needless to say, the Fourier transform
~gives the complex amplitude of the waves on the image. That is, the complex
amplitude F(p,¢) of the image is i h 7

FGo.0)= ( SN f'f(r.o)

xexp[:kprcos(v—w)]rdrdar (4)

where k = 27n/A; A is the wavelength. Substituting (;) into (4) and inte-
grating by terms,
‘ TP W 76
Fo,0) =S8 Kuat@y 0 O
% Ju(kap)expling] (5)



(cf. Appendix 1). In the following (5) is rearranged in the sampling
theorem form. Let us first define the following function st(p,¢) as a

standard function for the expansion of an image

21:: . Jl (kﬂ'l’)

Cnsr= 11 o5 Chany 1

o exp(mw) (6)

.c1rcle of .radius . v—hdhra*ﬂ belonging to the same order n. (see Figure l).

‘Among the functions.{CnS(p,¢)}, the following orthogonal.relation holds,

f Casler e Cni® (o, «s)pdpdw
=28xm8st/ {(kaJe' (Rxs)}?

(N

(See the end of Appendix 1, 2 for the proof.) The properties of the function
'{Cns(p,¢)} are common, to a certain extent, to those of the standard function

sin (kax - nv) sin (kay - mr)/(kaz - n7)(kay - mn) of a square aperture.

The amplitude.F(p,¢) of an image is expanded by the above orthogonal

Afunction'{CnS(p,¢)}, and becomes

: 4
F(ﬂ,(?)“ 2 2 Fn(ln/ka)cn(h"’) : (8)( )

‘The expanded coefficient F (A /ka) is given by.i

F.u.,/ka)= — f F(u/ ke, ¢)exp(—-mp)d¢» (9)

"This is the sampling ‘theorem for the

image by a circular aperture. The expansion coefficient F (X /ka) has a

magnitude equal to that obtained by multiplying exp(-in¢) to the amplitude
of F(Ans/ka,¢) on the circle (sampling circle of radius XnS/ku, and integrat-

ing all around with respect to the angle ¢. These are our sampling values.

(4)For a special case when-n= 0, that is when it is axially symmetric,
Kokura of Koana Lab. independently derived the same result (unpublished).



The sampling values can be defiried by.the integral form with respect

to cos m$, sin m¢ .[see. (40)]. Equation (8) can be derived from the conven-

(5)

tional definition of the expansion coefficient

{kaJa (Aes)}t 1 o< oo
Fu(lns/Ra) = """ 2n j; j; F(a.c')‘
)_( Cn‘(ﬂ, ¢)Pdpd¢ . t (lo)

As evident by .comparing the sampling theorem (7) and Equation (5)
obtained by the. Fourier-Bessel expansion, the following relation exists
between the coefficient K.nS of . the Fourier-Bessel .expansion and the sampling

value En(kns/kaj of the sampling theorem:
‘K-1=41=F-(l:s/ka)/(i)'fk‘;]n;(ius)}? ) (11')

This is.an important_equation which is used to obtain the amplitude of the
Fourier transform — that is, the pupil function £(r,0) from the given
sampling value Fn(kns/gg)f/’The pupil function £(r,6) is expressed by the

“sampling wvalue of the image'Fn(AnS/ka) as follows,

S0 55 4eFuGufke)

X exp(ind) Ja(Ansr/a@)/ () (kaTu' (Ans)}* | (12)

Since the intensity distribution.of the image is equal to the‘square of the
absolute.value.oflthe amplitude, we have

I(p,0)= § 2.‘.‘ Fy(Aus/ka)

] | (13)
X Fu* (Amt/ k) Cus(p, 0) Cmt* (0, ¢) _

The integrated.quantity.Io.of the intensity for the entire imagé by the
orthogonality (9) is,

‘-- &+ - ) T - (la)
Io". _4?.4- ?‘:.‘ 4n| Fu(Rus/ k)| ¥/ (Ra ]’ (lj,))z

(S)For example, by expressing Fn(AnS/ka) with £(r,0) from (1l1) and (2), and,

on the other hand, by assuming F(gns/ka ¢) of (8) can be converted to the

Fourier transform in £(r,6) and substituting, yields the equation agree-
ing with the former equation.



Although the inpegral.intensity I0 is equal to the square of the absolute

value of each sampling value according to the sampling theorem for a square
aperture, according to that for a circular aperture it is equal to the
square of the gbsolute sampling value multiplied by the coefficient

. , .
4"/k{Jn<(Ans)} .

When the sampling valueu{Fn(lnS/kd)} is given, and when an amplitude
distribution equal gg/FE(X;;]ka) is given on a circle of radius exp(in®)
Aﬂjknskd{Jn'(Ans)}z on an object, the amplitude distribution of an image
obtained by the initial. circular aperture agrees with the amplitude distri-
bution of the image before performing the sampling. Such a property is
common to the case of sampling for-a square aperture. The only difference

is that it is multiplied by the coefficient &v/knsk&{JnV(AnS)}z.

As an example of the above theorem, let us consider the cases when the
amplitude distribution .of the image F(p,¢) = 1 and exp(inf). For each case
employing (8) and (9), the following partial fraction expansions of Jo(z),
Jn(z) are obtained '

T =25 WL E-2

- Ju(2) =2:-2-: Lus/ Ju' (Ans) (,:_1.,2) ‘

These equations,. of. course,.can be proved directly.

2.2 Degrees of Freedom of Images by Circular Aperture:

The number of sampling values included.in a domain (area S) on an image'
‘18 the "number of degrees of freedom" of the. domain. Let us consider a
domain as a circle of radius a, and examine how many circles of radius
I An;/ka can be included in this circle. When n = 0, there is one sampling
value on the circle, whereas for n # 0, there are two sampling values
Fn(xnslka) and F_n(knslka). The problem can be solved by examining the
zero distribution of the Bessel function Jn(x) (n=0,1, 2, ...).



Although an explicit description. regarding. zeros.can be found.in
Chapter 15 of Watson's book, or in the table by.Jahnke-Emde, a general

expression cannot be found which holds for all n and s. Hence, at the
present, it is not possible to determine the exact number of degrees of
freedom from the distribution of zeros. Let us, therefofe, utilize the
results obtained from the‘asymptotic expansion of Jn(x) can be expressed
by the following asymptotic. equation

Jul®)—> ‘/g_ cos (r—1x —4mm) (15)
Hence,  the positive.zero Ans is,
TumGaveD (16)

(Gray, Mathew,.p. 86). Based.on the exact values.of zeros,_AnS/n -1/2n

and 1/2 n are plotted on x and.y coordinates, respectively.. It is conven-

‘ient to learn the trend of zero distribution. For a given degree n, the

approximation.of (16) holds for zeros of high.order s. Although the devia-
tion from (16) becomes larger. for the low order zeros, the validity of (16)

is preserved.. In Figure 2, since the values of zeros are expressed by

_A__ = m(xty), the total number of zéros of Ans < o is equal to the number

ns
of points contained between' axes X,Y and the line intersecting the axes

at 45° at (o/7,0),(0, a/m). For simplicity, let us assume (20) (Figure 2)
and examine the total number of zeros smaller.than o = kapo. Let N be the
positive integers which satisfy

N>kap0/ﬂ>N—1 .

As is evident‘from:the figure, the total number of zeros contained between
the axes and the.line intersecting axes X,Y respectively at (N,0) (0,N) at
45° is

N N
Xr+t
<

r=1

1
r=N?
1

/106
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Fig. 2 Showing the distribution of zeros
Aes of Bessel function Je(x) by blak

b o points whose coordinates are given by

X=Ays/m—n/2 and y=n/2, and the distribu-

tion of approximated zeros of =x(n/2+s)

by circles. ’ .

{
i Let us consider now the number of

sampling values at each sampling

L . % éircle and obtain the total number

‘Fig. 1 Showing the sampling functions -
Cos(p, ) and Cys(p,¢) where 2o and 2y, are ’
S-th zero of Bessel function Jo(x) and
Ji(x) respectively. o : :

of sampling values F contained in a

circle of radius a = kapo .

S

Noy T Twle
F= Z, Q20+ Z (1+2n)=N2+(N-1)?

2

Let F = 2N° and N = kdpolﬂ, then F = 2(kap)2/ﬂ2. Substituting k = 2w/

and npoz = §, we have
F=8a2S/mit 7

Comparing the exact Ans of Figure 2 and the distribution of the approximate
values, the right number of the degrees of freedom is slightly larger than
the approximate values from (17).

Let us now consider the degrees. of freedom. from a different angle.
As is well known, the degrees of freedom of a square éperture is F = 4&28/A2,
where 2a is the side of the aperture. Comparing the degrees of freedom of

a square aperture which circumscribes and one that inscribes a circle, the

<



desired degrees.of.freedom F must be in between, .that is,

1a28/1> F>2ats/2t (18)

The approximation-(17) als& gsatisfies the relation in (18). We will now
consider a square which is inscribed in. the above cifcle, and the rectangular
apertures which fit between the circle and the square. The additional degrees
of freedom arising from such a treatment will be added. to that from the

inscribed aperture ZnZS/AZs At the limit of approximation, we obtain.

FeratS/a2 (19)
This is equivalent to determining the area.of. a. circle whose. radius is «a.
The ratio between F from (19) and. the approximation from (17) is = /8 = 1.233.
If one were to start with a more accurate.distribution of zeros, values

closer to those. from (19) would probably be obtained.

2.3.. Sampling Theorem for Intensities

-Since intensity.is what we directly observe, the sampling theorem for
intensity distribution is more practical than thaf for the amplitude. The
intensity distribution. of .images is given by (13) when illuminated by co-

“herent light. When the illumination is incoherent or semicoherent, the
.intensityvdistribution of an image is equal to substituting the mean values
at each point instead of the coefficient of (13) F (A /ka)F *(A /ka). We
call the matrix composed of these coefficients as "intensity matrix"(6)
. The frequency.band of. the.intensity distribution.I(p,¢) is determined by the
bandwidth of {C (p,¢)C *(p,¢)} and not by the interference of light.

Let us consider.the bandwidth of Cns(p’¢)cmt*(p’¢')}' Let us express

Cns’ Cmt* in rectangular coordinates. Let each be expressed by F(x,y)G(x,y),"

6)

See the previous paﬁer [6] and the paper which is being submitted.
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and the Fourier transforms be'f(u,v), g(x,y). Then the Fourier transform

of the product F(x,y)G(x,y) is given by the convolution (Faltung) integral

between f(u,v)g(u,v)

D(”"tvl) (2 )-f g(“. V)f("a"'“ v.-u)dudv (20)

according to Parseval's theorem (Titchmarsh [7], p. 51), where f(uo - u,

Uy - v), g(u,v) assumes the non-zero values within circles of radius o whose
centers are at (uo,v ) (0,0), respectively. It is always zero at the outside.
Hence, the above integral D(u » Vg ) is completely zero at /h + vo2 > 2a.
This indicates that the frequency band of the product F(x,y) G(x,y) -— that
is, of the product Cns(p,¢)Cmt*(p,¢) — is 2a.

The frequency band of the intensity distribution of the image given by

the aperture o is restricted within the circle of radius 20 regardless of

the illumination cohere_ncy .

As indicated in Appendix 2, the Fourier transform of the product Cnscmt*
"can be obtained as a series of Bessel functions from a different angle than

the above proof(7).

' Since we now know that the frequency band of the intensity distribution
is restricted within a circle whose radius is twice the aperture o, replacing
a +2a F > I(p,¢) in the sampling theorems (7), (8) for the amplitude in
Appendix 2, the sampling theorem for the intensity can be directly derived.
Furthermore, since the intensity I(p,¢) is alwéys a positive integer, regard-

less of p,¢, the relationship

////”?;a"ﬂhn=nﬂh4u@=A;—mm

(7)By expressing Equation (20) in polar coordinates, writing the pupil
function in Fourier-Bessel expansion and integrating by terms, the series

of the response function can be obtained which has the sampling values of the
amplitude as coefficilents. Here, the addition theorem of the Bessel function
and Lommel integral will be used. It will be supplemented during the proof-
reading on Feb. 27.

12



exists among the sampling values. It follows fhat,

](l'. 9) = :é AnPn(ﬂ) .

+2,33 (Aur €08 ng—Buusin 1) Pus(s) (21)
where,
A —21; f T(us/2ka, 9)cos ne do
. Tl } | -
4B" = -2; j: I(‘-u/zka. ") sin ne d¢ Ii
- Py (,,') - 2les __ Ju(2kap) ; (23)

Jx' (Aas) Qkap)?— et :

Since the coefficients of Fourier-Bessel expansion are given by (11),

the Fourier transform 1i(r,0) of the intensity distribution can be obtained.

F,0) =45 55 Ao Clor/20) /(R T3 ()2

+85 33 (As, co5 n0~ Buysin n0) (24)
xJe(ur/20) /O (Ralw Gud)t

—t.

Similarly to the previous section, the sampling values of the intensity

‘contained in a circle of area S is
F(intensity)|~ras/zt (25)

Here, the bandwidth of the intensity is given by the radius 2c. Regardless
of the coherency of illumination, the sampling values within the area S are
~given by (25).

Nevertheless, the above sampling valges Ans and an cannot assume any
arbitrary value independently, unlike the case of amplitude; the intensity
I(ps¢) given by (21) must always be positive regardless of the value of
p,$. There is a certain degree of redundancy among thée sampling values of

the intensity distribution. Since F (intensity) of Equation (25) does not

13




give independent sampling values, its meaning is restricted compared to F
values for the amplitude distribution in the previous section. The redun~-
dancy in the sampling values of the intensity distribution is an advantage

in numerical calculations. This will become clear in the following section.

3. APPLICATION OF THE SAMPLING THEOREM
TO NUMERICAL CALCULATIONS

3.1 Airy Figure

The-abové sampling theorem is a linear interpolaﬁion method from the
standpoint of numerical calculations. It is the case where the necessary
sampling value is a minimum. Once the table of'{Cns(p,¢)} is given, the
rest is multiplication and ‘addition of Cns(p,¢) for the sampling values
Fn(lns/ka). Hence, in the "light contour" numerical calculation [3] of
Zernike, Nijboer and Nienhuis, which is discussed in the next section, only
the sampling value Fn(AnS/ka) need be determined, while the rest of the:

values can be obtained by the above interpolation method.

In order to expect rigorous agreement of the calculation results with
the amplitude before sampling, an infinite number of sampling values is
required, as is evident from (8). vIn thé actual case, the sampling number
must be made finite. Let us examine the degree of approximation with a
finite number of sampling values. The one which satisfies the objective is
probably diffraction by a circular aperture (Airy Figure) [8] for which
rigorously calculated values are known, and which is free of aberrations
and off- focusing . In the Airy Figure calculations, only the terms which
© contain FO(AOS/ka), Cos(p,¢) (s =1, 2, ...) in r < a need be considered,
since the system has axial symmetry. In this case, the pupil function
£(r,0) is £(r,0) = 1 for r 2 o, and £(r,0) = 0 for r > a. Substituting it
into (4) and performing integration utilizing the asymptotic equation of
the Bessel function, the well-known result.

F()=2]y(2)/2 (26)

14




is obtained where z = kap. It is multiplied by 2 so that F(0) = 1 at the
origin. Applying the sampling theorems for the ampl;tude (8) and (9) in
(26), we have |

I@/e=21 B0ty @n

where AS is the sth zero of Jo(z). Generally, letting the pﬁpil function be

r" exp(inf) in a circular aperture, we similarly obtain
Jrer(2)/2=22]n(2) :\é: 1/ (Ans2—2%)

This calculation will be left for the reader. Figure .3 shows the calculation

results with respect to four terms C taking the amplitudes

01° C02° 03°. Cos

at z = A, as sampling values for the amplitude distribution given by the

1
above (26). The amplitude at the origin is 0.992 where it should be 1.

For a rigorous calculation
FO=1F a/in=1 . (28)

In order to examine the degree of approximation at the origin, s must be
found, for which l/}'\s2 falls below the required accuracy using the asymptotic
Equation (16) for the value of zero As contained in (28). In order to insure

a fourth place accuracy in the amplitude value at the origin, the sth term

for which')ts2 2-104 must be included in the calculation. According to (16),

s ﬁﬂloz/ﬂ — that is, sampling values up to approximately 30 terms are

necessary. The interpolation for tﬂe amplitude coverges at approximately /108
s_z. For a higher precision, therefbre, many terms are needed. Hence,

although the sampling value for the amplitude is the sample of the minimum
necessary number, the convergence in the numerical calculation is not very

good.

The situation is much beﬁter with the sampling theorem of 2.3. for the
intensity distribution. As a result of the approximation calculation when

15



the sampling values are given at four
points z = )\1/2.,12/2,_ A3/2,_' >\4/2, a
3-place accuracy (10"3) is obtained
within the minimum blur circle. The
difference between the correct value is

indiscernible. Let us compare with the

numerical values.

Fig. 3 The amplitude of the Airy figure at
sharp focus is shown by full line and the

amplitude calculated by sampling theorem o
from four samples at 24,i=1,2,3,4 by ——

dotted line, A point

. : v z Ch/2* - approximation
Almost 1/1000 accuracy is -obtainable. e 1.0000 1.0006
.10 0.7746 0.7756
Let us examine the degree of approxi- : 2.0 0.33% 0.3330
mation at the origin I(0), and the 30 0.6511 0.0510
4.0 . 0.0011 0.0018
number of the required terms. The - 5.0 0.0172 0.0183
' ' 6.0 - 0.008 0.0114 .

intensity at the origin is, T

10 = 5 205,02/ LRG) (29)
Applying the asymptotic.equation for zeros as before, the magnitude .of the

:sth term is about s—7/2. For 10--4 accuracy, approximately 14 terms are

necessary. Since what we almost always need is the intensity distribution

which we can obtain with good accuracy, the sampling theorem for the intensity

is very useful. The high degree of accuracy obtainable for the same number
of samplings is due to the redundancy in the sampling values as discussed in
2.3. The intensity at the origin obtained from the 4-point approximation
for the amplitude discussed earlier becomes 0.8504. Compared to the inten-
sity sampling which gives 1.0006, the accuracy is bad. According to the
sampling ‘theorem for the intensity, many samplings are necessarsr for a

certain accuracy.
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Let us obtain the response function for a circular aperture — that is,
‘the Fourier transform of'{ZJl(z)/é}2 from (24). As it is well known [9],

the rigorous equation for the response function for this case ié given by

(see Appendix 3),

D(r) = (20 —sin 28)/x
d=cos~1r/2 (30)

'Figure 4 shows the result of approximation of the response function obtained
with four intensity sampling values. According to the figure, although it
shows good agreement around r = 2 with the rigorous solution, the error is
large around r = 0. It if/gnderstandable, since, in general, the values of
the response function/ih the vicinity of the origin are affected even by the
distant values of the diffraction figure. Let ﬁs examine how much the approx-

imation wvalues improve by increasinglthe sampling values:

4 points 0.917.
6 points 0.941
8 points 0.966

Let us examine the degree ‘of approximation as before.

The value of the response function at the origin is,

= 8)
D(O)= X (452 /212 () =1 (31) ®

Substituting the asymptotic value for A as previously, the magnitude of the
sth term is approximately 8-2. This isssame as the case of the sampling
theorem for amplitudes, meaning that the convergence is slow at the origin.

It is premature, however, to conclude from such a fact tﬁat it is impractical .

to obtain a response function from the sampling theorem. The value of the

.,(8)The value obtained from (24) is divided by 2 in order to have agreement
with the response function of (30) which is normalized.
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response function at the origin can be

obtained comparatively easily by an

analytical method. For example, one:

‘merely needs to consider the integral
UysVy = 0 in (20).
! Since D(0) -is equal to the integral of

0

letting g = £% and u

08

the diffraction figure, by supplying the
o€

intensity distribution which is within

02 ' .
, . our accuracy range, the approximation

o

o r Iy R value of the response function from the

rig. K The response ‘function of a cu-cu!ar
. vaperture without both aberration and :
focussing is shown by full line, and the factory.
response f{unction calculated from four
samples of intensity at Ao./2 i=1,2,3,4 by
dotted line.

sampling values will probably be satis-

3 2 The General Case

Needless to say, the previous discussions pertained tovan image by an
ideal circular aperture when the object is a point light source. Lét us
give a preliminary discussion in applying the sampling theorem to an image
formed by a system with aberrations and off-focusing for the case when the
object is a point source, or when the object had an arbitrary amplitude dis-
tribution. In general, the pupil function [3] fér the system with aberra-

tions and off-focusing is
f(r,8) =explipr—iV(r,0)] . (32)

where p 1s a parameter which indicates off-focusing,. and V(r,0) is the wave-
front aberration.. In spherical aberrations;_V(r,e) is only a function of |
r, whereas. in the non-spherical aberrations, such as astigmatisﬁ or coma, it
is a function of r,0. As clarified by Nijboer, V(r,0) is normélly expanded
by circle polynomials [3,10], and each term of the series has a physical

meaning.



For an object which has an arbitrary amplitude'distribution, if g(x,0)
is the Fourier transform of the amplitude distribution, .the Fourier spectrum
of the waves at the exit pupil is equal to the product of the above £(r,8)
- and g(r,0). Each one has a frequency band determined by the aperture o.
In order to 'apply the sampling theorems to these images, either the coeffi-
cients (2) of the Fourier-Bessel expansion of the given pupil function £(r,8),
or the sampling values of the image front must be determined. Generally,
the analytical calculation of (2) is not easy. As (2) was studied long time
ago by Lommel only for the off-focus case, sometimes it is solved using the

Lommel functions U and V (Gray-Mathews, Chapter 14).

When the aberrations are not too large, (32) can be expanded by the
circle polynomials as treated by Zernike, Nijboer and Nienhuis. Sampling
values of 2 can be obtained either from the amplitude of the intensity of the

diffraction waves of Nijboer, et al.

The calculation of Nijboer, et al. essentially is comprised of expanding
f(r,0) by the circle polynomials and performing its Fourier transform. .
Since the following general relation exists between the expansion of f(r,6)
by the circle polynomial and the Fourier-Bessel expansion, the pﬁpil function
can be expanded by the circle polynomials, which can then be subjecfed to

(9)

the Fourier-Bessel expansion .

Expansion by the circle polynomials is easier than that by the Fourier-
Bessel expansion. As the former is by a polynomial expansion, the final
expansion equation can be obtained by elementary calculations by applying
the asymptotic equation'between the polynomial equations.

If the pupil function f(r,0) is given inside the unit circle, generally

(g)Explanations are not given at this point in the original paper by Zernik,
Nijboer, and Nienhuis. This probably is a new problem which arose in con-
junction with the sampling theorem. '

19

i

=
s
B
3
b

[+
B
i

Bl
17
o
b

b
i
B




the pupill function is expanded by a gircle polynomial jm%?bW as follcws:iA

f('. 0= §(A-.-.=t cos o -
. maa0 Koug

+ Busm o2k Sin mO)RY .24 (7) A

(33)

Where the expansion coefficlent A.m B K is derived from the ortho-

- y2k, “m,mi2
gonal relation between {R]}.

A.,mzb} 20m+2k+1) o 2
Biuyma2k x _/;j; J(r,6) ‘

(34) .

sin mo i
cosmd R:‘” (r)rdrde

The orthogonal relation,
SR e suras e (35)

is applied. Actually, instead of integrating (34), the exponential function
in £(r,0) is expanded in series. In this case, by expressing eXp(iprZ) and
V(r,0) in circle polynomials like Zernike, et al. there will be man§ poly-
nomial products. Using the following asymptotic equations, let us.proceed

so that RJ(») appears in the expanded terms which contain cos m06 and sin mé6.

n—m+2
2(n+1)
ni+m

R () = RGN ™

u-:l
2(n+1) R'_l ™ i (36)
nim+2 a0
2 +1) R»n#-l (n
n—m
2(n+1)

+
Ry (D) =

+ R:—*ll n

This only applies when £(r,8) can be approximated by the first terms of thé

series., When the deviation is too large, it becomes complicated.

The Fourier transform of an expansion like (33) obtained by the above
procedure gives the amplitude distribution of the image front. This is the
result obtained by Zernike, -Nijboer, and Nienhuis.

First, let us integrate with respect to 6 the integral

.



e ff”**»"’s'" o

xexplikorcos(o —-9)]rdrd0 !

which is required for the Fourier transform, and obtain w""M&].(k;r). The

cos

integration with respect to r is obtained by the following integral given by
Zernike,

f R ,,,(r)j.(zr)rdra( 1)‘ ]"‘"“"’ 37

The Fourier transform of (33) eventuélly becomes,
RO 5 Cirirmidennioime
+B-,u+‘.‘k5i“mv)]luzin(kﬁ)/(k’)- -.’%‘ (38)
Now let us apply the sampling theorem 2 to (38). Sampling values are /110

obtained on the circle of radius kp = }‘ms [zero °f‘-(}‘ms :Jm(z))]
including sin mé, cos m¢. '

for the terms

FalGni/B = (=D 5 (Amums st
"'Bnunzl) ]n+'l+l(1»n)

- (39)
Fom(mi/R) = (~1)"(i)"g(A-,-+=» '

+I.B.,.+gj) . ]nw.'lh»l(luu)
m5

where. the positive integers s = 1, 2, 3, ... are taken.
The coefficients K of the Fourier-Bessel expansion are obtained by

applying (11) to (39). By restricting the sampling values with cos m¢, sin m¢
as

A-(lu:/ka)=- f F(ln/ka.v)cosmod(’]

(40)
Bu(imi/ka) =5 fo F(ays/ka, 0)sin me d¢’

The sampling values are expressed by

21



A-(znvlkﬂ) ( 1)k(i)-An--+'l]n+:l+|(in;jki“u; \‘
Bn(ln:/kq) ( 1).('-)"'Bmue':i.’nf:l'ﬂ(ln:)/luu-‘

Let us now consider the relation between the Fourier—Bessél expansion
(1) and the circle polynomial expansion (33). The key lieé in the integration
37). The basic function exp(ine)Jn(knsr) of the Fourier-Bessel expansion is
expanded by the circle polynomial. Otherwise, it is regarded as an equation
which gives the expansion coefficients when the 'circie polynomial es expanded
by the Fourier-Bessel expansion. Both expansions are related by

Jn(luf) 22( 1)'(ﬂ+2k+1)
x]u-zh»l(lns)Ru+-k(f)/1n (41)

R"""‘V(') =2 2 ( 1)*]l+'l+l(ll!) L }
i - x]l(lusf)/lnsfjn (‘l:)}z : (42)

Hence, Fourier-Bessel-expansion is obtained by substituting (42) into
(33). The reverse also holds. The expansion coefficient K.ns obtained in
this way obviously agrees with that obtained from the sampling value (39).

Intensity distribution I(p,4) is given by the product F(p,¢) from (38).
As was repeatedly stated, it is more practical to apply sampling theorems
fof the intensity distribution. General equations for the intensity distri-
bution are:

I(n.v)- 2 5 2 (~1ytslen(iymen

=0 hkeonn0lm
X (A...m cos m¢+B....+u sin mp)
X (A*n,n431 €OS N+ B¥uyn e 21 Sin 1p)
X Jmeske1 (ko) Insste1 (Rp)/ (Rp)2

-7‘?'. ’_0'2"( l)k*""'(l)""”'{(A,.,,,...“A nan»'l

+Bu,mo'.’lB‘-.n¢2!)C°s(m n)o X
+(B-m#:kA*nqul—Amnw:lB‘n.-uzl) (43)
Xsin(m—~n)e + (Amme2tA*nna 21
—Bumyme2tB¥anszi)cos(m-+n)e

+ (Brymszt A% nsct+ Amoms 2t B¥nna2t) v
XSin(,”+”)G’}Jm+!k4—l(kl')Jlt2’+l(ké)/(kﬁ):.
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Hence, the-sampling value for the intensity distribution is equal to the

value of Jm+2k+L(A)Jn+2 +l(k)/A2 of ern(z) and Jm+n(z) times the corres-
ponding coefficients of (43'). The quantity obtained by multiplying the
coefficients from (1l) to their sampling values is equal to the expansion
coefficients when the Fourier transform of the intensity distribution is
expressed by the Fourier transform. In such a manner,the response function
of the pupil function with arbitrary aberrations is obtained numerically by
the Fourier-Bessel expansion which has the sampling values of the intensity

. distribution.as coefficients.

When (43)' is directly transforméd, an analytic expression of the

" response function is obtained. By integration with respect to the angular
variable, we .obtain.an expression which is replaced by (J‘.)m—n cos (m-n)o
Jm_n(pr), (i)m+n cos (min)6 Jm*z(pr) and sin (m-n)6, sin (mtn)6. In infinite
integration with respect to.p, generally the following two types of integrals

emerge:

Iu~-=L7n-l;(;’;jjm+:i;;(?)Jn+;l+1(f)‘b/ﬂ (44)
I-+n=j;}-+-(nf)J-+:tu(p)Jn:tn(p)do/p , (45)

These integrats can be evaluated by the method described in Appendix 3.
Since a report pertaining to the analytical equafions of such response

functions cannot be found,.they were included in the Appendix.
. 4. CONCLUSION

The application.of. the.above sampling theorem for a circular aperture to
experimental data requires a separate discussion. When a diffraction image
which has a point light source as an object is experimentally given, and if
the sampling value given by 2 1s integrated on its sampling circle and '
determined experimentally, the parts which haﬁe n—-fold symmetry with respect :

to the axis can be obtained separately. Also, response functions arising

23



from such parts.can.be easily .derived.. This is an indication that sampling

theorems are also useful for.consolidating. experimental data.

The other important application<6f.the above_sampling theorem is to
extend the one-dimensional "intensity matrix" discussed in the preceding
paper [6] to a two-dimensional image by a circular aperture. A report has
been submitted pertaining to ﬁhis problem., In this case, the.element of
the transformation matrix, which represents the transformation of the
intensity matrix by passing through a circular aperture with aberratioms, /111
can be obtained as an applicétion.of the sampling theorem for a circular |
aperture. It has fhe same function as.the response function.in discussing
the formation of.an image.. The element of this transformation matrix is a
-quantity which indicates how a sampling function Cns(p,¢) on the object

appears on the sampling value of degree n and order s on the image.

The case where.the object is a point light.source was mainly discussed.
in 3. In applying the sampling theorem to an image of an object which has
an arbitrary span, sampling corresponding to an extremely large degree n
and order s is required.. Since a rigorous treatment of all such sampling
functions Cns(p,¢) is formidable, asymptotic.equations of the Bessel function
of the form (15) and (16) are employed.

As evident from the‘discussion,«several.new problems on Bessel functions
were created. A cross check on the problems by those who are interested will

be appreciated.

I am grateful to Professors Hidetoshi Takahashi, Hiroshi Kubota, Goro
Kuwabara and Iwao Okura of University of Tokyo for the valuable discussions.
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APPENDIX 1

Calculations on Cns(p »$)

I= l?ln f;:' _/:'J-(x..r/a) . s

Xexplind +ikpr cos(0 — o)) rdrde J

Integration with respect to angular variable 6 is obtained by the formula

].(Z) =~—“f exp[mﬂ—tz sin 9)d9 R (1.1)

from Watson (p. 20).

The integration,

/'(exp[m( 7 } f T Qusr/a) j.(kpr)rdr (1.2)

is obtained by the Lommel integral (Gray, Mathews, p. 69),

._,,.)f ].(lx)].(,‘x)xdx R .

1 - 3
"-7{1‘]:(1-').]! (nx) ~ 1]:1(1!1)]: (lx)] ( )

whefe,. An"s the zero,of.Jn(x) is utilized.

Now, the orthogonal relation (7) of C (p,cb) is zero when 'integrating
with respect to ¢:when n # m. When n = m, by representing C (p,¢) in the
integral of (1.2), it returns to the integral

[zaz [ 3051 un Jeen) [['sTe e raras: (1.4)
Here, by the Fourler-Bessel integral (Gray Mathews, p 96~97), we obtain

Sizde [ T Jue) Jateyy s = JuGary)
(0<y<) (1.5)

27



(1.4) is solved by the Lommel integral (1.3). However, when A = u, we apply

+(1-g) UnG0)] (1.6)

whére thq orthogonal relation is proved as a special case described in Appendix

2.
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. APPENDIX 2

Fourler Transform of C _(p,4)C ., (ps8)

Lgt Dnm(r,e;xnselmt) be the Fourier transform of Cns(p,¢)cmt*(p,¢),

D;;(r. 0;111. Amt) =ﬁ expli(n—n)o] :
x [ LD Im (D) Sn_mlxr/2)” (2.1). /112

0 (22— 2As®) (22—~ i)
where the constant A is

A= Uhudut/]a Qns) S’ ) K

By separating into partial fractions, the integral of (2.1) can be répresented

as the difference of two integrals.,

Dy (7,05 s, lml) =;=A exp[{(n --m) 0]
X { Ty (773 20) = Ty (77 3 At} (s = Amt?); (2.2)

where

Tun(rlai0) = [ Ta) S (0) Jo-m(er/a) 225 (2.3)

When n = m and 8 = t, we have
Dux (r,b:l.;,‘i.,) =_A?.(vr, 05 (2 ‘4)
(2 ° 5)

Tt =_K?}; ) otxr/a) e
Thus, it is necessary to determine the two infinite integfals, (2.3) and (2.5).
. Direct solutions to these are not listed in reference books. Since the inte-
grals have a definite physical significance, as expected the solution was
found by the following procedure. By expressing the product of Bessel functions

-
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Jn(x)Jm(x) by an integral which :anludes,Jn_m, and changing tﬁe oxrder of
integration it can be expressed as an infinite integral of the product of

two Bessel functions of the same order. Since the latter can be determined

by the Hankel integral, the solution can be derived.

According to Watson, § 5.43 (page 150),

. ) .
Je @) Jm(x)=—=(~1)= [ * Jo_w(2xcos )
¥ j; Xcos(n+m)oda_ (2'6)

Let us substitute.this into (2.3), and change the order of integration. .

The Hankel integral [Watson § 13.53 (p. 429)] can be solved as a Hankel
function Hn(l) of the 1St kind

S renren 2

x2_a2

{79 =i Ja(bd) HD(a2) (a>8) )

(2 . 7)
¥ ni Ja(a2) HOX(bA) (a<b)
By this integration, the following result is obtained;
‘j--(ii'/c:l) A V o ’
cos-'r/2¢ .
‘ = (—1)*iJu_m(dr/a) f Hy_w®)(2icos8) cos (52 +m) 0do
’ (2.8)

. . taf2 -
(1) Hy - (7)) f Jr-m(2icos8) cos (-+m)ode
cos-iy/2s

The integrals contained in (2.8) can be determined .as a series by Garf's

~ generalized equation (Watson, p. 361) of the addition theorem of Neumann's
formula )

Jy (22 cos 8)cos vo

= -DUa®i@cos 2he
H™, (4 cos 6)cos vo

=, 5 (~DHHO, 4 (@) S (D cos 2k

(2.9)

By substituting this result into (2.8), we have
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‘ ’ iy Hy. <’>(21cos0) cos(n+ m)ods
; Je .

{

.- (~ D) Hao e s D 1D

2.10)

j
g
!
{

cos-irf2s cos(n+m)o X
x J; cos(#1—m)8 cos 2kado

PN T —

b

i . :
j ost m Ja-m{(21 cos 8)cos (n+-m)ode

! = 2 ( 1)),’1 u+k(2)]i(1)

/2 dos(n+m)0
j:;os-!r/z. cos(n—m)é

[

cos 2kodp

| SO

i

(2.11)
The integrals of thevtrigonometric'functions contained in (2.10) and (2.11)
can be solved by an elementary method. Hence, by substituting (2.10) and
(2.11) into (2.8), Inm(r/q;l) is determined.

The subsequent integral (2.5) In(r,e) can be determined by differentia-
tion of Inm(r/q;A), that is

5
Tarfan= Ty dl

'

[I..(r/a D1 (2.12)

From the above resﬁlt, it can be proved that Dnm(r/a,e Ans Rmt) is
restricted only in the region of radius Inm(r/q;l). For example, determina-

tion of the above I (Za A) gives

Fom@as2) = (1) iHy - n((22)
/2 :
o xj: Ju-w(22 cos 8)cos(n+m)ode .

From Equation (2.6), the integral on the right hand returns to the product
Inm(r/q;k). Since A is the zero of J (x) or J (x), (2a A) 2 0. Now, the

integral does not exist for r > 2a. The same is true for I (Za A)

The orthogonal relation of Cns(p,¢) proved in Appendix 1 corresponds to
the integral (2.2) of Appendix 2 when r = 0. Therefore, the above solution

. glves a separate proof for the orthogonal relation (7). It is zero except

when n = m and s = t. /?EEE/QWF m and s = t,
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- T i . :
I==f U-(‘)) (,x :g)g 212 i (2 13)

This agrees with the result proved by using the Fourier-Bessel integral in
Appendix 1.

If we first determine Inm.(o‘,)\) with (2.12), then by (2.8) the integral /113
of (2.13) becomes

L0 = (-1 [ " H (@3 cos )cos 2us do

Nevertheless, the coefficlents of the series (2.10) are all zero except

in the case when k = + n.
Hence,
'}’..'..“«)AJ;‘-'.—}.V(;)':;.&;Z{,
where the integral (2.13) is. determined by
-k L om
Applying HaOM) =Ju()+i¥a() and using .
T Vi) = T () Ya(2) = :;72;“) ’
(Watson § 3.63, page 77)

the first result 1/ (2)\2) is obtained.
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APPENDIX 3
Analytical Equation of Respornse Function. ..

.~

The response function of a circular aperture with no aberration and off-
focusing (Airy figure),
'D(f)=j:‘{' 2]"(‘) }zfogix)xdx ‘ (3.1)
With Gegenbauer formula (Watson, p. 367) let us replace {ZJl(x)/k}z, that is

(2):(x) J (2:: cos ¢/2) sxn’#
{ } f sm¢/2 a4 (3'2)

Substituting this into (3.1) and changing the order of integration, we have

: 2
D=2 ("I [ Gusin D e (3.3)

'-Thg in inite integral contained here.can be solved as follows. (Watson, p.
406, Magnus-Oberhettinger, p. 50);

(li T (a>d)
fj,(bx)Jo(ax)a,={’2—b’ (a=b) } (3.4)
° 1 . .
3 (a<d) I
Let us substitute this into (3.3)
D(r)— z:m‘ﬂ(l+cos¢)d¢=—(20——sm20) (3.5)(10)
d=cos-1y/2 : -

Let us now consider the response function for. the.case with spherical

aberrations and off-focusing. 1In this case it is relatively simple, since

(lo)The difference of 2 in the coefficient from the text (30) arises from the
normalization, D(0) = 1. Normally, this integral is obtained from the convo-
lution integral [9]. It can also be solved by (3.12).
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it is axially symmetric and there is no term with cos and sin in (43'), that
is

D=5 E (-1 AnAu® e
k=0l=0 . :
xj;}:hd(3).’214-1(1)]0(7'1)42/3 ; (3 . 6)

For the integral, we have

= [T Faras 0 T s/ s
When k = 1 using Gegenbauer's formula [Watson, p. 367.(17)] with respect to
{frm@p, L [T D@ssinig
x

Terlx J,  2x sing/2 -
X Clax(cos ¢é)sin? édé (30 8)

‘Substituting this into (3.7) and using *(3.4)

= 04 1y fonion2 O isintg/2

(3.9)

where Gegenbauer's polynomial c2kl can be expressed by a sin function as
follows

Clzr(cosg) ~sin(2k+1)g/sin § (3.10)

By substituting. this into.(3.9), Ikk(r) can be obtained.by an.elementary
method.

When k = 1, the product J2k+1(x)J2i+l(x) is by (2.6) or by the following

integral

Ju(x) Ju(x) ="2'r“/;',’.lu..(2xcoso)cos (n—m)ode 2.6 ")

From this,
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']u(r)an—-—f cos2(k l)adaf]»cnb(Zxcosa) .
xJo(rz)dx/z ‘&:

(3.11)

P l)" f cosZ(k-LI_x.l)oda f ]g(t-l)(Z!COSO); ,
1‘ . X]o(rx)dx/x . ; (3. 11 )

.
'
R

Expressing k+i or k—i: by n, the necessary integral is

: A—f J; -‘]o(rx)lz.(Zx cos 0)dx/x ‘

When r and 2 cos @ are real numbers and 2n > 0, the integral can be solved.as

a special case by.Sonine, Schofheitlin's formula (Magnus-Oberhettinger, p. 49).

(i) 'r<2cosn :

A—- .Fx(n -n31; 2%) (3.12)
(ii) r=2cos o Z=r{2cos 0

A=0 .

where 2Fl(nm —n;l;(z)rz) is a polynomial up.to (Z)Zn term as follows

Fi(n,—m15(Z)D)

., (-1 2 (n2—1) (nt—22
~1-mz24+ " (';,). )70 W 3{)(:' )z-+
2=1)ese -9 (3. 13)
...... +(_.1)-”_(.”__l)(_;!{)": (” 1)’) 2o ,
Z=‘r/2 cos ¢ R

Substituting (3.12) .and (3.13) into (3.11) or (3.11'), we have

. L
Ju(r)-—z~f"°' 2 eos 2(k—1)0

2Rl — (D (r/2c0s0)n) (3.14) /114
2(k+1)

or it becomes the same form with respect to kﬁi.

This i'nt'egral can be solved as a polynomical in r2 , and the coefficients
can be solved simply.as a trigonometric integral. As evident from the above,
when k = 1 (>0) by changing it into an integral contaiﬁing J2k(2x cos 6) using

T



(2.6"), (3.12). can be used, and can be solved with the Sonine-Schafheithlin
formula without resorting to Gegenbauer's formula.

For the case of non-spherical aberration, it can be solved simila;ly
using (2.6') and Sonine-Schafheitlin's formula.

Thus, we have three ways to determine the response function:
(1) By the sampling theorem using the Fourier-Bessel fﬁﬁﬁgi;ﬁi?iﬁ;j

(ii) From the sampling coefficients for amplitude, utilizing the

Fourier transform of Cnscmt* of Appendix 2.

(iii) By the analytical method from the intensity distribution of
Appendix 3.

For the numer@cal‘éalculétions, method. (i) is most practical. Given a
sampling value, the answer can be obtained from the known table of Bessel
functions. The disadvantage is, as stated in 31, the correct value in the
vicinityof r =0 cannot be obtained by this method, whereas with method (1ii)
it is easy to obtain values at r = 0. Hence, methods (i) and (iii) comple-
ment each other. _Regarding method (ii), when the intensity distribution is
given as an intensity matrix, the Fourier transform of the intensity distri-
bution can be obtained by multiplying the series solution of Appendix 2 to

the matrix elements. In this case, also, it is probably convenient to use (1)

to obtain the solution.
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